

Indirect Proofs

Announcements

- ***Pset 0***
 - Due Monday.
- ***Pset 1***
 - Goes out today, due next **Friday 1pm** (NOT midnight)
 - “Using LaTeX in CS103” Beginner’s Quick Start Tutorial will be available on Canvas this weekend (sorry, taking a bit for it to be pulled from archives).
 - LaTeX is the preferred tool for writing homework in this class.
 - Partners are allowed—go to Ed Q&A forum to find one.
- ***Office Hours***
 - They start Monday! Schedule will be on Canvas later today.

Outline for Today

- ***What is an Implication?***
 - Understanding a key type of mathematical statement.
- ***Negations and their Applications***
 - How do you show something is *not* true?
- ***Proof by Contrapositive***
 - What's a contrapositive?
 - And some applications!
- ***Proof by Contradiction***
 - The basic method.
 - And some applications!

Logical Implication

If n is an even integer, then n^2 is an even integer.

An ***implication*** is a statement of the form
“If P is true, then Q is true.”

If n is an even integer, then n^2 is an even integer.

This part of the implication is called the *antecedent*.

This part of the implication is called the *consequent*.

An *implication* is a statement of the form
“If P is true, then Q is true.”

If n is an even integer, then n^2 is an even integer.

If m and n are odd integers, then $m+n$ is even.

If you like the way you look that much,
then you should go and love yourself.

An **implication** is a statement of the form
“If P is true, then Q is true.”

What Implications Mean

**“If there's a rainbow in the sky,
then it's raining somewhere.”**

- In mathematics, implication is directional.
 - The above statement doesn't mean that if it's raining somewhere, there has to be a rainbow.
- In mathematics, implications only say something about the consequent when the antecedent is true.
 - If there's no rainbow, it doesn't mean there's no rain.
- In mathematics, implication says nothing about causality.
 - Rainbows do not cause rain. ☺

Negations

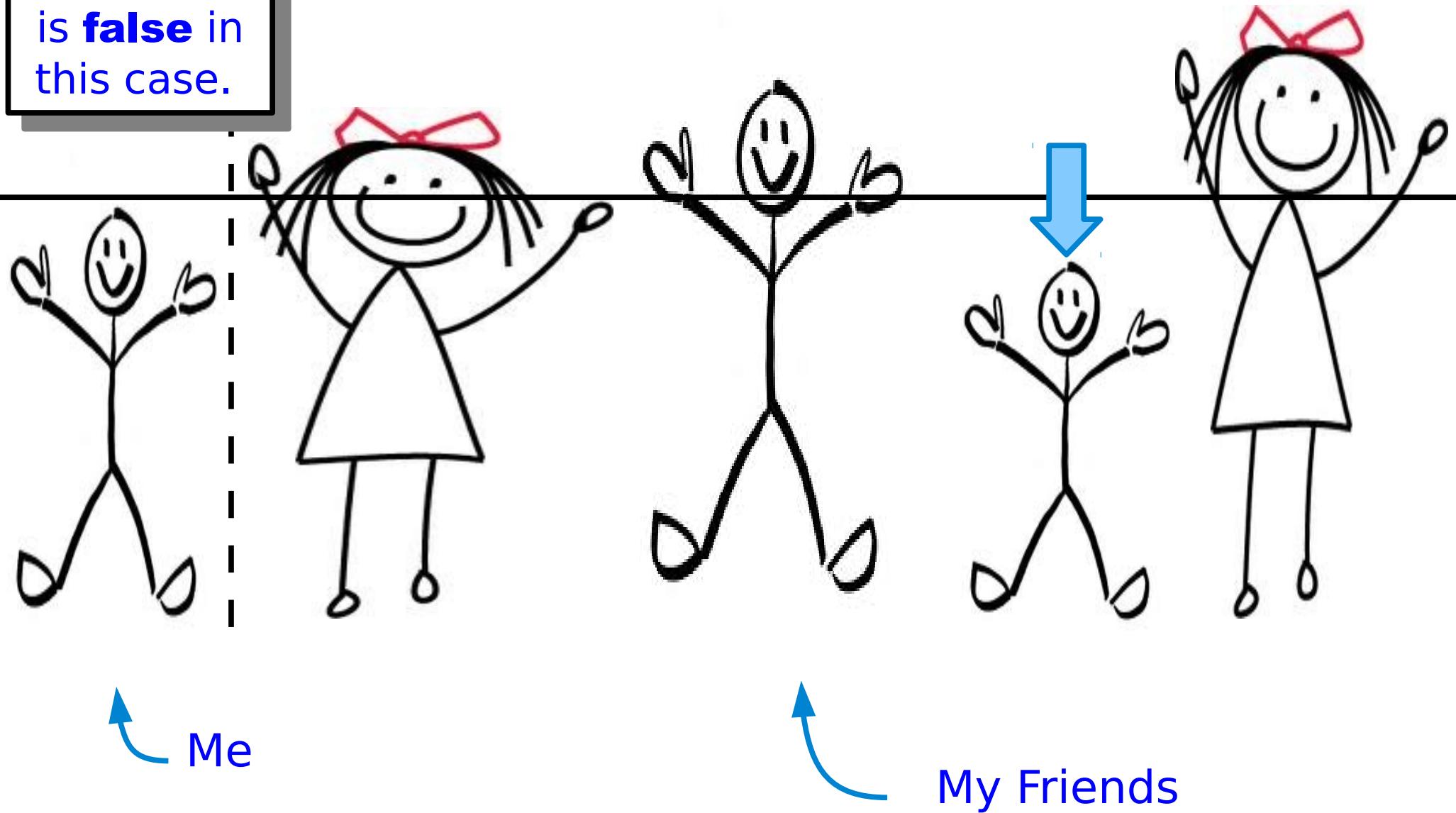
Negations

- A ***proposition*** is a statement that is either true or false.
- Some examples:
 - If n is an even integer, then n^2 is an even integer.
 - $\emptyset = \mathbb{R}$.
- The ***negation*** of a proposition X is a proposition that is true whenever X is false and is false whenever X is true.
- For example, consider the proposition “it is snowing outside.”
 - Its negation is “it is not snowing outside.”
 - Its negation is *not* “it is sunny outside.”

How do you find the negation
of a *universal* statement?

“All my friends are taller than me”

Statement
is **false** in
this case.



The negation of the *universal* statement

Every P is a Q

is the *existential* statement

There is a P that is not a Q .

(Remember that existential means “at least one.”)

The negation of the *universal* statement

For all x , $P(x)$ is true.

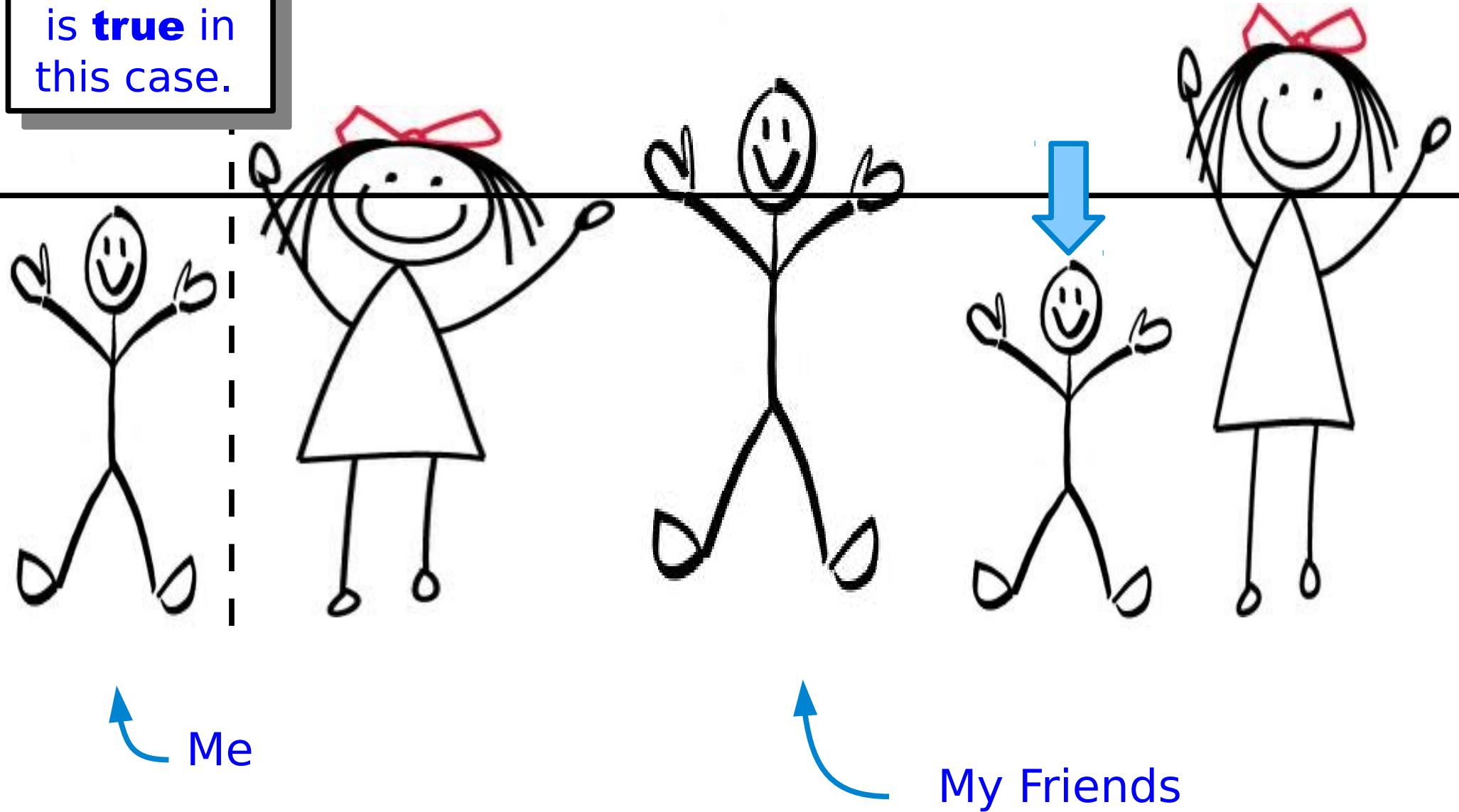
is the *existential* statement

There exists an x where $P(x)$ is false.

(Remember that existential means “at least one.”)

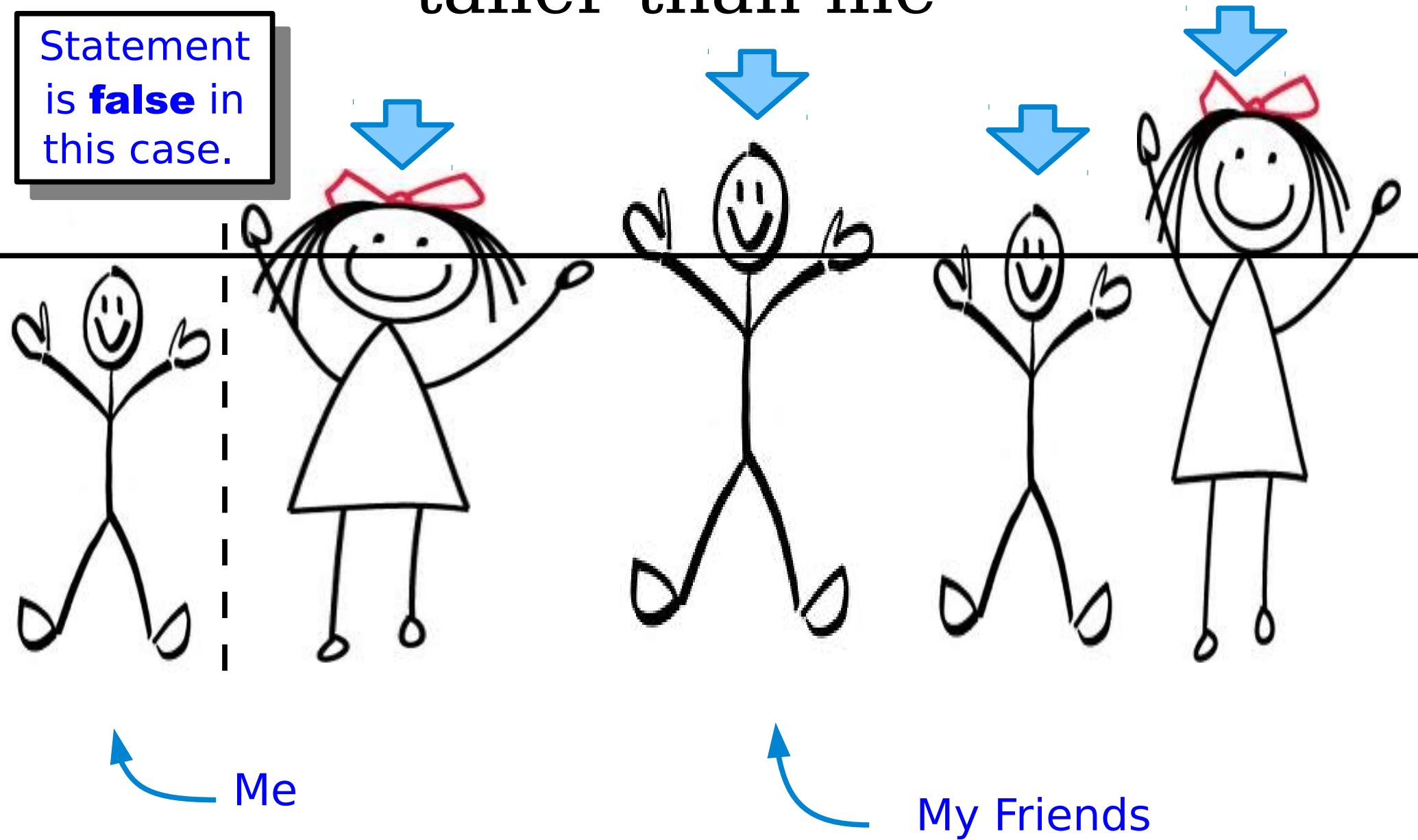
“There exists a friend who is not taller than me”

Negation
is **true** in
this case.



“There exists a friend who is not taller than me”

Statement
is **false** in
this case.



The negation of the *existential* statement

There exists a P that is a Q

is the *universal* statement

Every P is not a Q .

The negation of the *existential* statement

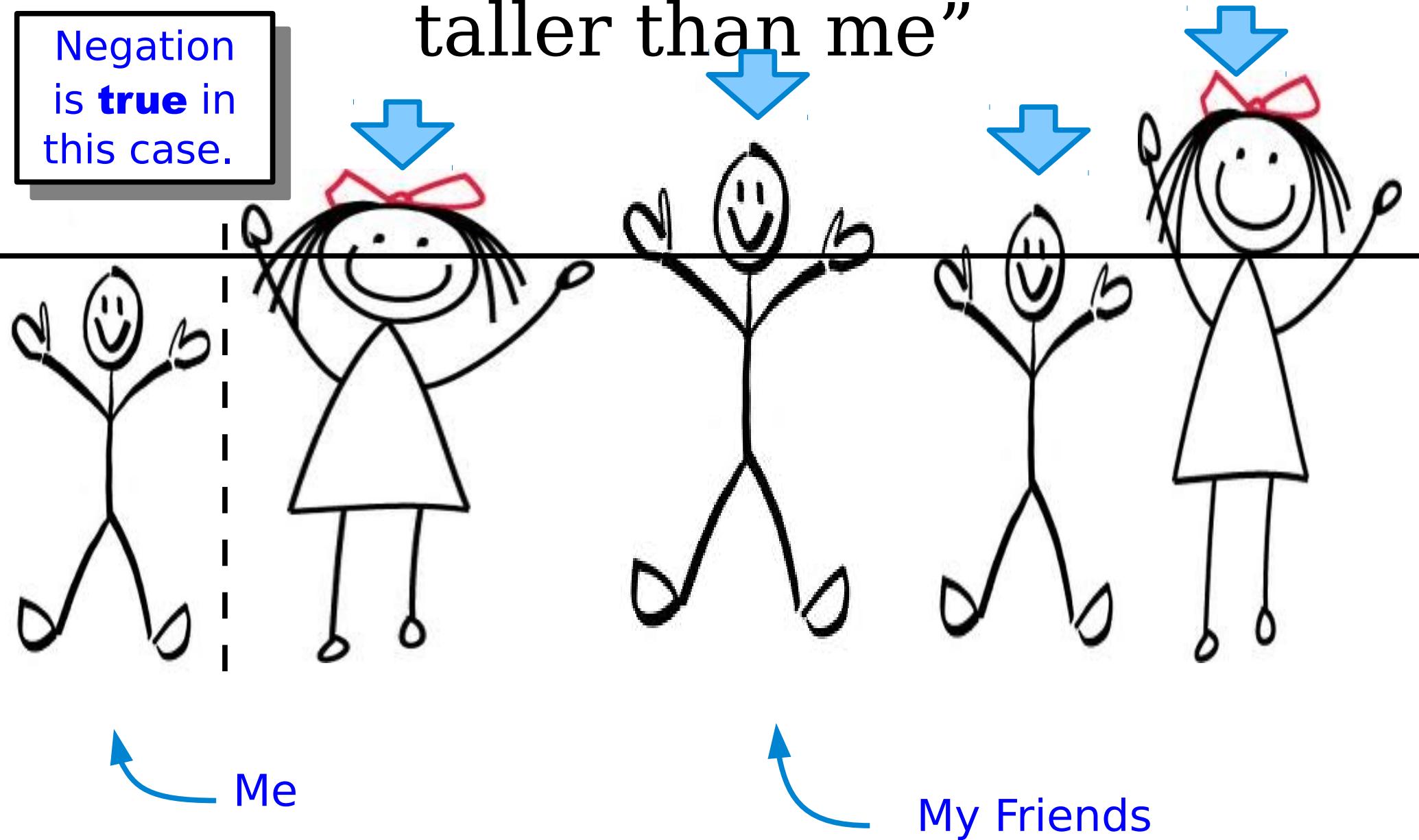
There exists an x where $P(x)$ is true

is the *universal* statement

For all x , $P(x)$ is false.

“All my friends are not not taller than me” → “All my friends are taller than me”

Negation
is **true** in
this case.



How do you negate an implication?

Negating Implication

Dr. Bailey: “If you pick a perfect March Madness bracket this year, then I’ll give you an A+ in CS103.”

Q: under what conditions am I a liar?*

What if...

- ...you pick a **perfect** bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a bad bracket and get a C?

* *The way we define negation in logic means these are the conditions under which the negation of my statement is true.*

The negation of the statement

**“For any x , if $P(x)$ is true,
then $Q(x)$ is true”**

is the statement

**“There is at least one x where
 $P(x)$ is true and $Q(x)$ is false.”**

***The negation of an implication
is not an implication!***

The negation of the statement

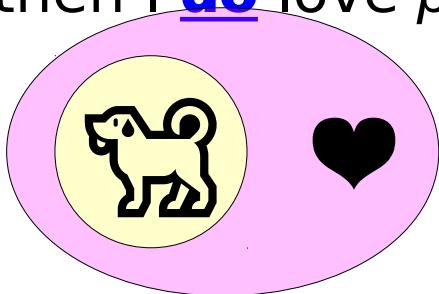
**“For any x , if $P(x)$ is true,
then $Q(x)$ is true”**

is the statement

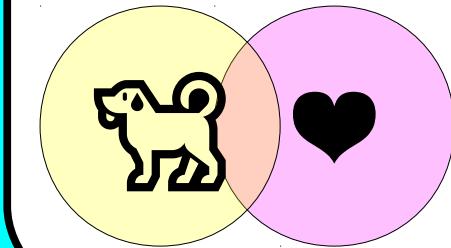
**“There is at least one x where
 $P(x)$ is true and $Q(x)$ is false.”**

***The negation of an implication
is not an implication!***

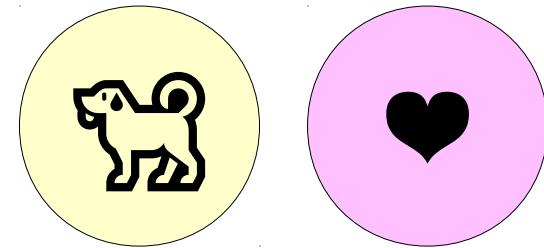
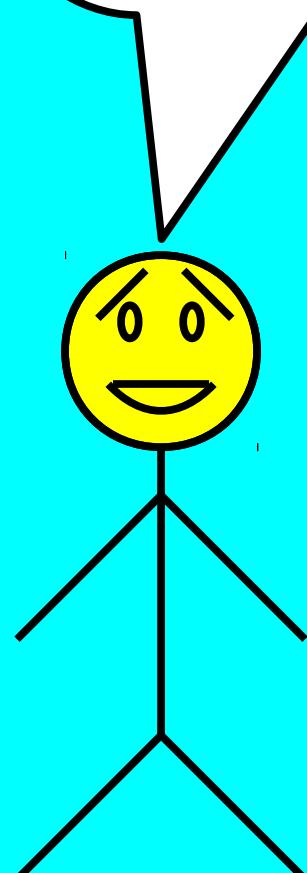
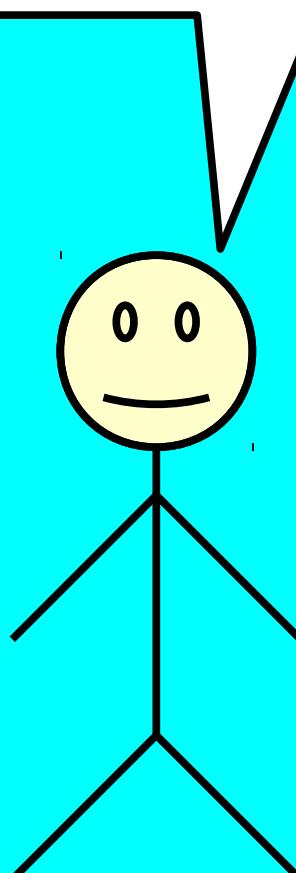
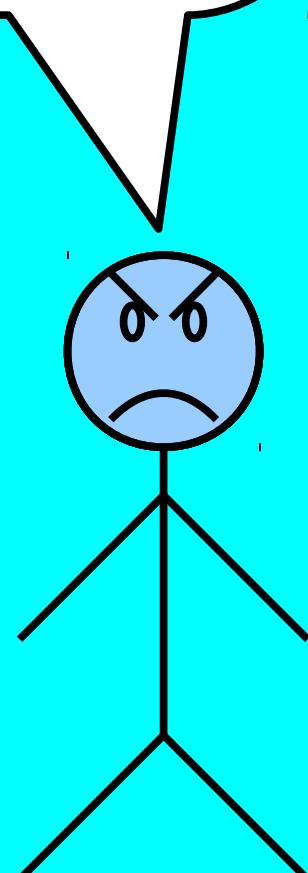
If p is a puppy,
then I **do** love p !



It's
complicated.



If p is a puppy,
then I **don't** love p !



How to Negate Universal Statements:

“For all x , $P(x)$ is true”

becomes

“There is an x where $P(x)$ is false.”

How to Negate Existential Statements:

“There exists an x where $P(x)$ is true”

becomes

“For all x , $P(x)$ is false.”

Negation
of “if-then”
becomes
“and”!

How to Negate Implications:

“For every x , if $P(x)$ is true, then $Q(x)$ is true”

becomes

“There is an x where $P(x)$ is true and $Q(x)$ is false.”

Proof by Contrapositive

If P is true, then Q is true.

If Q is false, then P is false.

What are the negations of the above two statements?

If P is true, then Q is true.

negates to

P is true and Q is false.

If Q is false, then P is false.

What are the negations of the above two statements?

If P is true, then Q is true.

negates to

P is true and Q is false.

negates to

If Q is false, then P is false.

What are the negations of the above two statements?

If P is true, then Q is true.

negates to

P is true and Q is false.

equivalent to

negates to

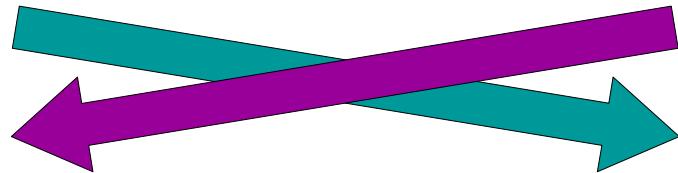
If Q is false, then P is false.

What are the negations of the above two statements?

The Contrapositive

- The ***contrapositive*** of the implication
If P is true, then Q is true
is the implication
If Q is false, then P is false.
- The contrapositive of an implication means exactly the same thing as the implication itself.

If it's a puppy, then I love it.

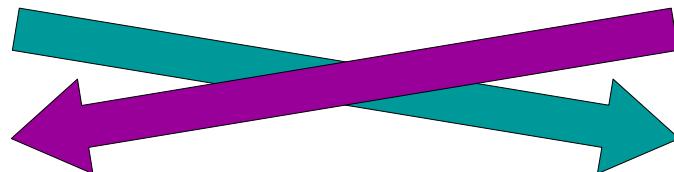


If I don't love it, then it's not a puppy.

The Contrapositive

- The **contrapositive** of the implication
If P is true, then Q is true
is the implication
If Q is false, then P is false.
- The contrapositive of an implication means exactly the same thing as the implication itself.

If I store cat food inside, then raccoons won't steal it.



If raccoons stole the cat food, then I didn't store it inside.

To prove the statement
“if P is true, then Q is true,”
you can choose to instead prove the
equivalent statement

“if Q is false, then P is false,”
if that seems easier.

This is called a ***proof by contrapositive***.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement

This is a courtesy to the reader and says “heads up! we’re not going to do a regular old-fashioned direct proof here.”

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement.

What is the contrapositive of this statement?

if n^2 is even, then n is even.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement.

What is the contrapositive of this statement?

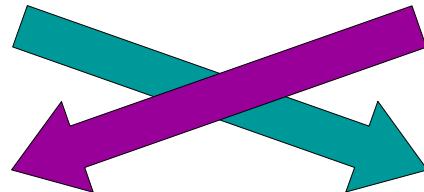
if n^2 is even, then n is even.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement.

What is the contrapositive of this statement?

if n^2 is even, then n is even.

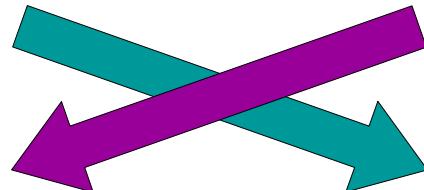


Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement.

What is the contrapositive of this statement?

if n^2 is even, then n is even.



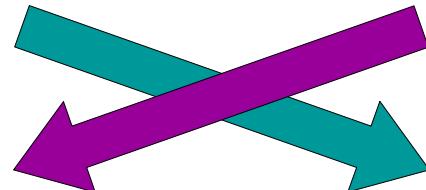
If n is odd, then n^2 is odd.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd.

What is the contrapositive of this statement?

if n^2 is even, then n is even.



If n is odd, then n^2 is odd.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd.

Here, we're explicitly writing out the contrapositive. This tells the reader what we're going to prove.

From here, we just do our regular proof template!

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd. Pick an arbitrary odd integer n . We want to show that n^2 is odd as well.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd. Pick an arbitrary odd integer n . We want to show that n^2 is odd as well.

We know that n is odd, which means there is an integer k such that $n = 2k + 1$.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd. Pick an arbitrary odd integer n . We want to show that n^2 is odd as well.

We know that n is odd, which means there is an integer k such that $n = 2k + 1$. This in turn tells us that

$$n^2 = (2k + 1)^2$$

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd. Pick an arbitrary odd integer n . We want to show that n^2 is odd as well.

We know that n is odd, which means there is an integer k such that $n = 2k + 1$. This in turn tells us that

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \end{aligned}$$

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd. Pick an arbitrary odd integer n . We want to show that n^2 is odd as well.

We know that n is odd, which means there is an integer k such that $n = 2k + 1$. This in turn tells us that

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned}$$

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd. Pick an arbitrary odd integer n . We want to show that n^2 is odd as well.

We know that n is odd, which means there is an integer k such that $n = 2k + 1$. This in turn tells us that

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned}$$

From this, we see that there is an integer m (namely, $2k^2 + 2k$) such that $n^2 = 2m + 1$.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd. Pick an arbitrary odd integer n . We want to show that n^2 is odd as well.

We know that n is odd, which means there is an integer k such that $n = 2k + 1$. This in turn tells us that

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned}$$

From this, we see that there is an integer m (namely, $2k^2 + 2k$) such that $n^2 = 2m + 1$. That means that n^2 is odd, which is what we needed to show.

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd. Pick an arbitrary odd integer n . We want to show that n^2 is odd as well.

We know that n is odd, which means there is an integer k such that $n = 2k + 1$. This in turn tells us that

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned}$$

From this, we see that there is an integer m (namely, $2k^2 + 2k$) such that $n^2 = 2m + 1$. That means that n^2 is odd, which is what we needed to show. ■

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd. Pick an arbitrary odd integer n . We want to show that n^2 is odd as well.

We know integer us that

From th (namely means to show. ■

The general pattern here is the following:

- 1. Start by announcing that we're going to use a proof by contrapositive so that the reader knows what to expect.**
- 2. Explicitly state the contrapositive of what we want to prove.**
- 3. Go prove the contrapositive.**

Theorem: For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof: We will prove the contrapositive of this statement, that if n is odd, then n^2 is odd. Pick an arbitrary odd integer n . We want to show that n^2 is odd as well.

We know that n is odd, which means there is an integer k such that $n = 2k + 1$. This in turn tells us that

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned}$$

From this, we see that there is an integer m (namely, $2k^2 + 2k$) such that $n^2 = 2m + 1$. That means that n^2 is odd, which is what we needed to show. ■

Biconditionals

- The previous theorem, combined with what we saw on Wednesday, tells us the following:

For any integer n , if n is even, then n^2 is even.

For any integer n , if n^2 is even, then n is even.

- These are two different implications, each going the other way.
- We use the phrase ***if and only if*** to indicate that two statements imply one another.
- For example, we might combine the two above statements to say

for any integer n : n is even if and only if n^2 is even.

Proving Biconditionals

- To prove a theorem of the form

P if and only if Q ,

you need to prove two separate statements.

- First, that if P is true, then Q is true.
- Second, that if Q is true, then P is true.
- You can use any proof techniques you'd like to show each of these statements.
 - In our case, we used a direct proof for one and a proof by contrapositive for the other.

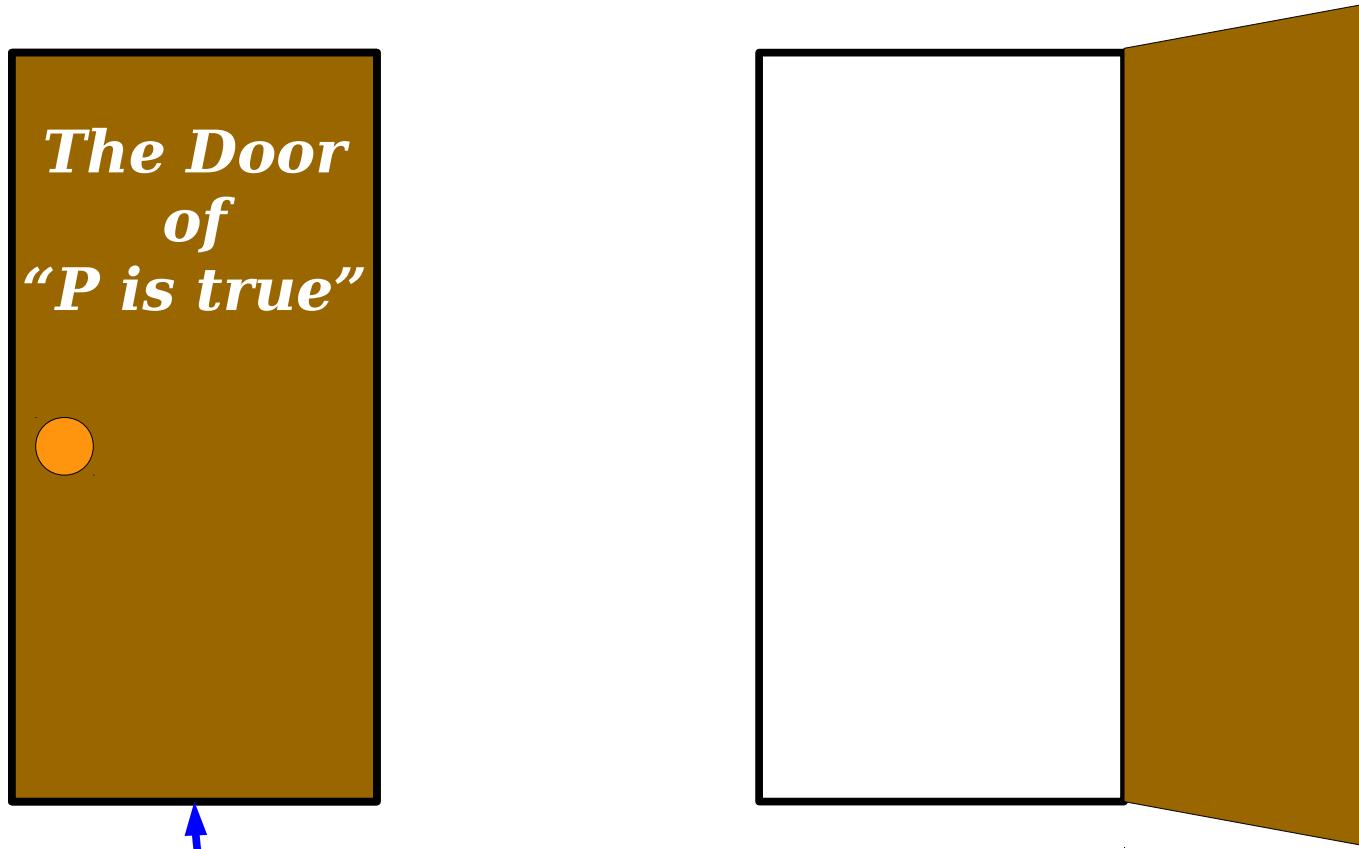
Proof by Contradiction

*Every statement in mathematics is either true or false.
If statement P is **not** false, what does that tell you?*

*The Door
of
“ P is true”*

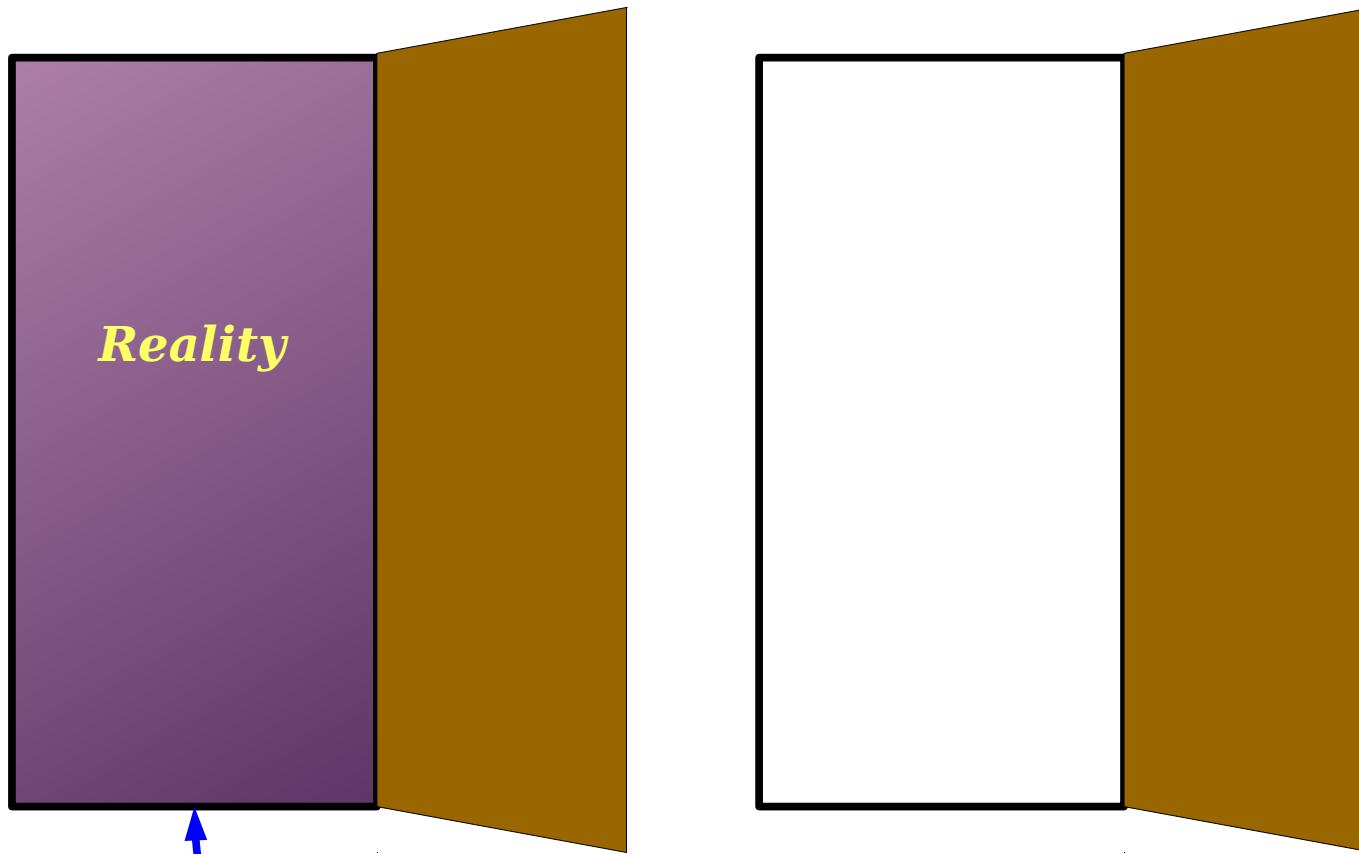
*The Door
of
“ P is false”*

*Every statement in mathematics is either true or false.
If statement P is not false, what does that tell you?*



Even without opening this door, we know “reality” has to be here.

*Every statement in mathematics is either true or false.
If statement P is not false, what does that tell you?*



Even without opening this door, we
know “reality” has to be here.

A ***proof by contradiction*** shows that some statement P is true by showing that P isn't false.

Proof by Contradiction

- **Key Idea:** Prove a statement P is true by showing that it isn't false.
- First, assume that P is false. *The goal is to show that this assumption cannot hold.*
- Next, show this leads to an impossible result.
 - For example, we might have that $1 = 0$, that $x \in S$ and $x \notin S$, that a number is both even and odd, etc.
- Finally, conclude that since P can't be false, we know that P must be true.

An Example: ***Set Cardinalities***

Set Cardinalities

- We've seen sets of many different cardinalities:
 - $|\emptyset| = 0$
 - $|\{1, 2, 3\}| = 3$
 - $|\{ n \in \mathbb{N} \mid n < 137 \}| = 137$
 - $|\mathbb{N}| = \aleph_0$.
- These span from the finite up through the infinite.
- **Question:** Is there a “largest” set? That is, is there a set that's bigger than every other set?

Theorem: There is no largest set.

Theorem: There is no largest set.

Proof:

Theorem: There is no largest set.

Proof:

To prove this statement by contradiction, we're going to assume its negation.

Theorem: There is no largest set.

Proof:

To prove this statement by contradiction, we're going to assume its negation.

**What is the negation of the statement
“there is no largest set?”**

Theorem: There is no largest set.

Proof:

To prove this statement by contradiction, we're going to assume its negation.

**What is the negation of the statement
“there is no largest set?”**

One option: “there is a largest set.**”**

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

To prove this statement by contradiction, we're going to assume its negation.

**What is the negation of the statement
“there is no largest set?”**

One option: “there is a largest set.**”**

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Notice that we're announcing

1. **that this is a proof by contradiction, and**
2. **what, specifically, we're assuming.**

**This helps the reader understand where we're going.
Remember – proofs are meant to be read by other
people!**

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Now, consider the set $\wp(S)$.

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Now, consider the set $\wp(S)$. By Cantor's Theorem, we know that $|S| < |\wp(S)|$, so $\wp(S)$ is a larger set than S .

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Now, consider the set $\wp(S)$. By Cantor's Theorem, we know that $|S| < |\wp(S)|$, so $\wp(S)$ is a larger set than S . This contradicts the fact that S is the largest set.

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Now, consider the set $\wp(S)$. By Cantor's Theorem, we know that $|S| < |\wp(S)|$, so $\wp(S)$ is a larger set than S . This contradicts the fact that S is the largest set.

We've reached a contradiction, so our assumption must have been wrong.

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Now, consider the set $\wp(S)$. By Cantor's Theorem, we know that $|S| < |\wp(S)|$, so $\wp(S)$ is a larger set than S . This contradicts the fact that S is the largest set.

We've reached a contradiction, so our assumption must have been wrong. Therefore, there is no largest set.

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Now, consider the set $\wp(S)$. By Cantor's Theorem, we know that $|S| < |\wp(S)|$, so $\wp(S)$ is a larger set than S . This contradicts the fact that S is the largest set.

We've reached a contradiction, so our assumption must have been wrong. Therefore, there is no largest set. ■

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Now, consider the set $\wp(S)$. By Cantor's Theorem, we know that $|S| < |\wp(S)|$, so $\wp(S)$ is a larger set than S . This contradicts the fact that S is the largest set.

We've reached a contradiction, so our assumption must have been wrong. Therefore, there is no largest set.

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

The three key pieces:

1. Say that the proof is by contradiction.
2. Say what you are assuming is the negation of the statement to prove.
3. Say you have reached a contradiction and what the contradiction means.

In CS103, please include all these steps in your proofs!

We've reached a contradiction, so our assumption must have been wrong. Therefore, there is no largest set.

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that there is a largest set; call it S .

Now, consider the set $\wp(S)$. By Cantor's Theorem, we know that $|S| < |\wp(S)|$, so $\wp(S)$ is a larger set than S . This contradicts the fact that S is the largest set.

We've reached a contradiction, so our assumption must have been wrong. Therefore, there is no largest set. ■

Proving Implications

- Suppose we want to prove this implication:
If P is true, then Q is true.
- We have three options available to us:
 - ***Direct Proof:***
 - ***Proof by Contrapositive.***
 - ***Proof by Contradiction.***

Proving Implications

- Suppose we want to prove this implication:
If P is true, then Q is true.
- We have three options available to us:
 - ***Direct Proof:***
Assume P is true, then prove Q is true.
 - ***Proof by Contrapositive.***
 - ***Proof by Contradiction.***

Proving Implications

- Suppose we want to prove this implication:
If P is true, then Q is true.
- We have three options available to us:
 - ***Direct Proof:***
Assume P is true, then prove Q is true.
 - ***Proof by Contrapositive.***
Assume Q is false, then prove that P is false.
 - ***Proof by Contradiction.***

Proving Implications

- Suppose we want to prove this implication:
If P is true, then Q is true.
- We have three options available to us:
 - ***Direct Proof:***
Assume P is true, then prove Q is true.
 - ***Proof by Contrapositive.***
Assume Q is false, then prove that P is false.
 - ***Proof by Contradiction.***
... what does this look like?

Theorem: For any integer n , if n^2 is even, then n is even.

Theorem: For any integer n , if n^2 is even, then n is even.

What is the negation of our theorem?

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Negation
of “if-then”
becomes
“and”!

(we often use “but” as
a synonym for “and”)

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

$$n = 2k + 1. \quad (1)$$

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

$$n = 2k + 1. \quad (1)$$

Squaring both sides of equation (1) and simplifying gives the following:

$$n^2 = (2k + 1)^2$$

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

$$n = 2k + 1. \quad (1)$$

Squaring both sides of equation (1) and simplifying gives the following:

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \end{aligned}$$

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

$$n = 2k + 1. \quad (1)$$

Squaring both sides of equation (1) and simplifying gives the following:

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned} \quad (2)$$

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

$$n = 2k + 1. \quad (1)$$

Squaring both sides of equation (1) and simplifying gives the following:

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned} \quad (2)$$

Equation (2) tells us that n^2 is odd, which is impossible; by assumption, n^2 is even.

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

$$n = 2k + 1. \quad (1)$$

Squaring both sides of equation (1) and simplifying gives the following:

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned} \quad (2)$$

Equation (2) tells us that n^2 is odd, which is impossible; by assumption, n^2 is even.

We have reached a contradiction, so our assumption must have been incorrect.

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

$$n = 2k + 1. \quad (1)$$

Squaring both sides of equation (1) and simplifying gives the following:

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned} \quad (2)$$

Equation (2) tells us that n^2 is odd, which is impossible; by assumption, n^2 is even.

We have reached a contradiction, so our assumption must have been incorrect. Thus if n is an integer and n^2 is even, n is even as well.

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

$$n = 2k + 1. \quad (1)$$

Squaring both sides of equation (1) and simplifying gives the following:

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned} \quad (2)$$

Equation (2) tells us that n^2 is odd, which is impossible; by assumption, n^2 is even.

We have reached a contradiction, so our assumption must have been incorrect. Thus if n is an integer and n^2 is even, n is even as well. ■

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

The three key pieces:

- 1. Say that the proof is by contradiction.**
- 2. Say what the negation of the original statement is.**
- 3. Say you have reached a contradiction and what the contradiction entails.**

In CS103, please include all these steps in your proofs!

Equation (2) tells us that n^2 is odd, which is impossible; by assumption, n^2 is even.

We have reached a contradiction, so our assumption must have been incorrect. Thus if n is an integer and n^2 is even, n is even as well. ■

Theorem: For any integer n , if n^2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n where n^2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

$$n = 2k + 1. \quad (1)$$

Squaring both sides of equation (1) and simplifying gives the following:

$$\begin{aligned} n^2 &= (2k + 1)^2 \\ &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1. \end{aligned} \quad (2)$$

Equation (2) tells us that n^2 is odd, which is impossible; by assumption, n^2 is even.

We have reached a contradiction, so our assumption must have been incorrect. Thus if n is an integer and n^2 is even, n is even as well. ■

Proving Implications

- Suppose we want to prove this implication:

If P is true, then Q is true.

- We have three options available to us:

- ***Direct Proof:***

Assume P is true, then prove Q is true.

- ***Proof by Contrapositive.***

Assume Q is false, then prove that P is false.

- ***Proof by Contradiction.***

Assume P is true and Q is false, then derive a contradiction.

Negation
of "if-then"
becomes
"and"!

What We Learned

- ***What's an implication?***

- It's statement of the form “if P , then Q ,” and states that if P is true, then Q is true.

- ***How do you negate formulas?***

- It depends on the formula. There are nice rules for how to negate universal and existential statements and implications.

- ***What is a proof by contrapositive?***

- It's a proof of an implication that instead proves its contrapositive.
 - (The contrapositive of “if P , then Q ” is “if not Q , then not P .“)

- ***What's a proof by contradiction?***

- It's a proof of a statement P that works by showing that P cannot be false.

Your Action Items

- ***Read “Guide to Office Hours,” the “Proofwriting Checklist,” and the “Guide to LaTeX.”***
 - There's a lot of useful information there. In particular, be sure to read the Proofwriting Checklist, as we'll be working through this checklist when grading your proofs!
- ***Start working on PS1.***
 - At a bare minimum, read over it to see what's being asked. That'll give you time to turn things over in your mind this weekend.

Next Time

- ***Mathematical Logic***
 - How do we formalize the reasoning from our proofs?
- ***Propositional Logic***
 - Reasoning about simple statements.
- ***Propositional Equivalences***
 - Simplifying complex statements.