Indirect Proofs



Announcements

 Pset O
 Due Monday.
- Pset 1

* Goes out today, due next Friday 1pm (NOT midnight)

« “Using LaTeX in CS103” Beginner’s Quick Start Tutorial
will be available on Canvas this weekend (sorry, taking a
bit for it to be pulled from archives).

- LaTeX is the preferred tool for writing homework in this class.
 Partners are allowed—go to Ed Q&A forum to find one.

 Office Hours
 They start Monday! Schedule will be on Canvas later today.



Outline for Today

« What is an Implication?

 Understanding a key type of mathematical statement.
 Negations and their Applications

 How do you show something is not true?
* Proof by Contrapositive

« What's a contrapositive?
 And some applications!

* Proof by Contradiction

 The basic method.
 And some applications!



Logical Implication



If n is an even integer, then n? is an even integer.

An implication is a statement of the form
“If P is true, then Q is true.”



If n is an even integer, then n? is an even integer.

This part of the This part of the
iImplication is called the iImplication is called
antecedent. the consequent.

An implication is a statement of the form
“If P is true, then Q is true.”



If n is an even integer, then n? is an even integer.

If m and n are odd integers, then m+n is even.

If you like the way you look that much,
then you should go and love yourselt.

An implication is a statement of the form
“If P is true, then Q is true.”



What Implications Mean

“If there's a rainbow in the sky,
then it's raining somewhere.”

 In mathematics, implication is directional.

 The above statement doesn't mean that if it's raining
somewhere, there has to be a rainbow.

* In mathematics, implications only say something
about the consequent when the antecedent is true.

e If there's no rainbow, it doesn't mean there's no rain.

* In mathematics, implication says nothing about
causality.

« Rainbows do not cause rain.



Negations



Negations

* A proposition is a statement that is either true or false.

« Some examples:
« If n is an even integer, then n2 is an even integer.
- J=R.

 The negation of a proposition X is a proposition that is
true whenever X is false and is false whenever X is true.

* For example, consider the proposition “it is snowing
outside.”

« Its negation is “it is not snowing outside.”
 Its negation is not “it is sunny outside.” A\



How do you find the negation
of a universal statement?



“All my friends are taller than me”

Statement

IS false in
this case.
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The negation of the universal statement
Every P is a Q
is the existential statement

There is a P that is not a O.

(Remember that existential means “at least one.”)



The negation of the universal statement
For all x, P(x) is true.
is the existential statement

There exists an x where P(x) is false.

(Remember that existential means “at least one.”)



“There exists a friend who is not taller

than me”

Negation
IS true In
this case.
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“There exists a friend who is not
taller than me”

Statement

IS false in
this case.

—- Me k My Friends



The negation of the existential statement
There exists a P that is a Q
i1s the universal statement

Every P is not a Q.



The negation of the existential statement
There exists an x where P(x) is true
1S the universal statement

For all x, P(x) is false.



“All my triends are not not taller
than me” — “All my friends are

Negation taller than me”

IS true In
this case.

k Me k My Friends



How do you negate an implication?



Negating Implication

Dr. Bailey: “If you pick a perfect March
Madness bracket this year, then I'll give
you an A+ in CS103.”

Q: under what conditions am I a liar?*

What if...

e ...you pick a perfect bracket and get an A+7?
« ...you pick a bad bracket and get an A+7?

e ...you pick a perfect bracket and get a C?

e ...you pick a bad bracket and get a C?

* The way we define negation in logic means these are the
conditions under which the negation of my statement is true.



The negation of the statement

“For any x, if P(x) is true,
then O(x) is true”

is the statement

“There is at least one x where
P(x) is true and Q(x) is false.”

The negation of an implication
is not an implication!



The negation of an implication
is not an implication!
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How to Negate Universal Statements:

“For all x, P(x) is true”
becomes
“There is an x where P(x) is false.”

How to Negate Existential Statements:

“There exists an x where P(x) is true”

becomes
Negation “For all x, P(x) is false.”
of “if-then”
becomes
“and”! How to Negate Implications:

“For every x, if P(x) is true, then Q(x) is true”
becomes
“There is an x where P(x) is true and Q(x) is false.”



Proof by Contrapositive



If P is true, then Q is true.

If Q is false, then P is false.

What are the negations of the above two statements?



If P is true, then Q is true.

negates to

P is true and Q is false.

If Q is false, then P is false.

What are the negations of the above two statements?



If P is true, then Q is true.

negates to '

P is true and Q is false.

negates to '

If Q is false, then P is false.

What are the negations of the above two statements?



If P is true, then Q is true. -

negates to '

equivalent

P is true and Q is false. o

negates to '

If Q is false, then P is false. -

What are the negations of the above two statements?



The Contrapositive

 The contrapositive of the implication
If P is true, then Q is true
is the implication
If Q is false, then P is false.

 The contrapositive of an implication means
exactly the same thing as the implication itself.

If it’s a puppy, then I love it.

—_—

If I don’t love it, then it’s not a puppy.



The Contrapositive

 The contrapositive of the implication
If P is true, then Q is true
is the implication
If Q is false, then P is false.

 The contrapositive of an implication means
exactly the same thing as the implication itself.

If I store cat food inside, then raccoons won’t steal it.

—_—

If raccoons stole the cat food, then I didn’t store it inside.



To prove the statement
“if P is true, then Q is true,”

you can choose to instead prove the
equivalent statement

“if Q is false, then P is false,”

if that seems easier.

This is called a proof by contrapositive.



Theorem: For any n € Z, if n2 is even, then n is even.



Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this
statement



We will prove the contrapositive of this
statement

This is a courtesy to the reader and
says “heads up! we’re not going to
do a reqgular old-fashioned direct
proof here.”




Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this
statement

What is the contrapositive of this statement?

if n? is even, then n is even.




Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this
statement

What is the contrapositive of this statement?

if n? is even, then n is even.




Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this
statement

What is the contrapositive of this statement?

if n? is even, then n is even.

P




Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this
statement

What is the contrapositive of this statement?

if n? is even, then n is even.

~S

If n is odd, then n? is odd.




Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this
statement, that if n is odd, then n2 is odd.

What is the contrapositive of this statement?

if n? is even, then n is even.

~S

If n is odd, then n? is odd.




Theorem: For any n € Z, it n2 is even, then n is even.

Proof: We will prove the contrapositive of this
statement, that if n is odd, then n2 is odd.

Here, we're explicitly writing out the
contrapositive. This tells the reader what
we're going to prove.

From here, we just do our regular proof
template!




Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this

statement, that if n is odd, then n2 is odd. Pick an
arbitrary odd integer n. We want to show that n2 is
odd as well.



Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this

statement, that if n is odd, then n2 is odd. Pick an
arbitrary odd integer n. We want to show that n2 is
odd as well.

We know that n is odd, which means there is an
integer k such that n = 2k + 1.



Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this

statement, that if n is odd, then n2 is odd. Pick an
arbitrary odd integer n. We want to show that n2 is
odd as well.

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

n2 = (2k + 1)2



Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this

statement, that if n is odd, then n2 is odd. Pick an
arbitrary odd integer n. We want to show that n2 is
odd as well.

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

n2 = (2k + 1)

4k2 + 4k + 1



Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this

statement, that if n is odd, then n2 is odd. Pick an
arbitrary odd integer n. We want to show that n2 is
odd as well.

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

n2 = (2k + 1)2
= 4k2 + 4k + 1
= 2(2k2 + 2Kk) + 1.



Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this

statement, that if n is odd, then n2 is odd. Pick an
arbitrary odd integer n. We want to show that n2 is
odd as well.

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

n2 = (2k + 1)2
= 4k2 + 4k + 1
= 2(2k2 + 2Kk) + 1.

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1.



Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this

statement, that if n is odd, then n2 is odd. Pick an
arbitrary odd integer n. We want to show that n2 is
odd as well.

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

n2 = (2k + 1)2
= 4k2 + 4k + 1
= 2(2k2 + 2Kk) + 1.

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1. That
means that n2 is odd, which is what we needed
to show.



Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this

statement, that if n is odd, then n2 is odd. Pick an
arbitrary odd integer n. We want to show that n2 is
odd as well.

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

n2 = (2k + 1)2
= 4k2 + 4k + 1
= 2(2k2 + 2Kk) + 1.

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1. That
means that n2 is odd, which is what we needed
to show. B



We will prove the contrapositive of this
statement, that if n is odd, then n2 is odd

The general pattern here is the following:

1. Start by announcing that we're going to use a
proof by contrapositive so that the reader knows
what to expect.

2. Explicitly state the contrapositive of what we
want to prove.

3. Go prove the contrapositive.




Theorem: For any n € Z, if n2 is even, then n is even.

Proof: We will prove the contrapositive of this

statement, that if n is odd, then n2 is odd. Pick an
arbitrary odd integer n. We want to show that n2 is
odd as well.

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

n2 = (2k + 1)2
= 4k2 + 4k + 1
= 2(2k2 + 2Kk) + 1.

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1. That
means that n2 is odd, which is what we needed
to show. B



Biconditionals

 The previous theorem, combined with what we saw on
Wednesday, tells us the following:

For any integer n, if n is even, then n2 is even.
For any integer n, if n2 is even, then n is even.

 These are two different implications, each going the
other way.

 We use the phrase if and only if to indicate that two
statements imply one another.

* For example, we might combine the two above
statements to say

for any integer n: n is even if and only if n2 is even.



Proving Biconditionals

* To prove a theorem of the form
P if and only if Q,

you need to prove two separate statements.

 First, that if P is true, then Q is true.
« Second, that if Q is true, then P is true.

* You can use any proof techniques you'd like
to show each of these statements.

* In our case, we used a direct proof for one and
a proof by contrapositive for the other.



Proot by Contradiction



Every statement in mathematics is either true or false.
If statement P is not false, what does that tell you?

The Door The Door
of of

“P is true” “P is false”




Every statement in mathematics is either true or false.
If statement P is not false, what does that tell you?

The Door
of

“Pis true”

Even without opening this door, we
know “reality” has to be here.




Every statement in mathematics is either true or false.
If statement P is not false, what does that tell you?

Even without opening this door, we
know “reality” has to be here.




A proof by contradiction shows
that some statement P is true by
showing that P isn’t false.



Prootf by Contradiction

 Key Idea: Prove a statement P is true by
showing that it isn’t false.

 First, assume that P is false.

* Next, show this leads to an impossible result.

* For example, we might have that 1 = 0, that
X € Sand x € S, that a number is both even and
odd, etc.

» Finally, conclude that since P can’t be false,
we know that P must be true.



An Example: Set Cardinalities



Set Cardinalities

« We’'ve seen sets of many different cardinalities:
- |9 =0
* |{1, 2,3} =3
+ [{neN|n<137}| =137
* |IN| = No.

* These span from the finite up through the
infinite.

* Question: Is there a “largest” set? That is, is
there a set that’s bigger than every other set?



Theorem: There is no largest set.



Theorem: There is no largest set.
Proof:



Theorem: There is no largest set.
Proof:

To prove this statement by contradiction, we’re
going to assume its negation.




Theorem: There is no largest set.
Proof:

To prove this statement by contradiction, we’re
going to assume its negation.

What is the negation of the statement
“there is no largest set?”




Theorem: There is no largest set.
Proof:

To prove this statement by contradiction, we’re
going to assume its negation.

What is the negation of the statement
“there is no largest set?”

One option: “there is a largest set.”




Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

To prove this statement by contradiction, we’re
going to assume its negation.

What is the negation of the statement
“there is no largest set?”

One option: “there is a largest set.”




Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.



Assume for the sake of contradiction that
there is a largest set; call it S.



Assume for the sake of contradiction that
there is a largest set; call it S.

Notice that we're announcing

1. that this is a proof by contradiction, and
2. what, specifically, we're assuming.

This helps the reader understand where we're going.
Remember - proofs are meant to be read by other
people!




Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.



Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set ©(S).



Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set ©(S). By Cantor’s
Theorem, we know that |S| < |0 (S)]|, so o(S) is a
larger set than S.



Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set ©(S). By Cantor’s
Theorem, we know that |S| < |9 (S)|, so ¢(S) is a
larger set than S. This contradicts the fact that S
is the largest set.



Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set ©(S). By Cantor’s
Theorem, we know that |S| < |9 (S)|, so ¢(S) is a
larger set than S. This contradicts the fact that S
is the largest set.

We’ve reached a contradiction, so our
assumption must have been wrong.
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assumption must have been wrong. Therefore,
there is no largest set.



Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set ©(S). By Cantor’s
Theorem, we know that |S| < |9 (S)|, so ¢(S) is a
larger set than S. This contradicts the fact that S
is the largest set.

We’ve reached a contradiction, so our
assumption must have been wrong. Therefore,
there is no largest set. W



Assume for the sake of contradiction that
there is a largest set; call it S.

We’ve reached a contradiction, so our
assumption must have been wrong. Therefore,
there is no largest set.



Assume for the sake of contradiction that
there is a largest set; call it S.

The three key pieces:

1. Say that the proof is by contradiction.
2. Say what you are assuming is the negation of the statement to prove.
3. Say you have reached a contradiction and what the contradiction means.

In CS103, please include all these steps in your proofs!

We’ve reached a contradiction, so our
assumption must have been wrong. Therefore,
there is no largest set.



Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set ©(S). By Cantor’s
Theorem, we know that |S| < |9 (S)|, so ¢(S) is a
larger set than S. This contradicts the fact that S
is the largest set.

We’ve reached a contradiction, so our
assumption must have been wrong. Therefore,
there is no largest set. W



Proving Implications

 Suppose we want to prove this implication:
If P is true, then Q is true.
 We have three options available to us:

 Direct Proof:
 Proof by Contrapositive.

 Proof by Contradiction.



Proving Implications

 Suppose we want to prove this implication:
If P is true, then Q is true.
 We have three options available to us:

 Direct Proof:
Assume P is true, then prove Q is true.
* Proof by Contrapositive.

 Proof by Contradiction.



Proving Implications

 Suppose we want to prove this implication:
If P is true, then Q is true.
 We have three options available to us:

 Direct Proof:
Assume P is true, then prove Q is true.
* Proof by Contrapositive.
Assume Q is false, then prove that P is false.
 Proof by Contradiction.



Proving Implications

 Suppose we want to prove this implication:
If P is true, then Q is true.
 We have three options available to us:

 Direct Proof:
Assume P is true, then prove Q is true.
* Proof by Contrapositive.
Assume Q is false, then prove that P is false.
 Proof by Contradiction.
... what does this look like?



Theorem: For any integer n, if n“ is even, then n is even.



Theorem: For any integer n, if n“ is even, then n is even.

What is the negation of our theorem?




Theorem: For any integer n, if n? is even, then n is even.
Proof: Assume for the sake of contradiction that there is

an integer n where n? is even, but n is odd.

Negation
of “if-then”
becomes

“and”!

(we often use “but” as
a synonym for “and”)




I'heorem: For any integer n, if n? is even, then n is even.
Proof: Assume for the sake of contradiction that there is
an integer n where n? is even, but n is odd.



Theorem: For any integer n, if n? is even, then n is even.
Proof: Assume for the sake of contradiction that there is
an integer n where n? is even, but n is odd.

Since n is odd we know that there is an integer k such
that

n=2k+1. (1)



Theorem: For any integer n, if n? is even, then n is even.
Proof: Assume for the sake of contradiction that there is
an integer n where n? is even, but n is odd.

Since n is odd we know that there is an integer k such
that

n=2k+1. (1)

Squaring both sides of equation (1) and simplifying
gives the following:

n‘= (2k + 1)
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Equation (2) tells us that n? is odd, which is impossible;
by assumption, n? is even.
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Since n is odd we know that there is an integer k such
that
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Squaring both sides of equation (1) and simplifying
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= 4k* + 4k + 1
= 2(2k* + 2k) + 1. (2)

Equation (2) tells us that n? is odd, which is impossible;
by assumption, n? is even.

We have reached a contradiction, so our assumption
must have been incorrect. Thus if n is an integer and
n?is even, n is even as well. B



Assume for the sake of contradiction that there is
an integer n where n“ is even, but n is odd.

The three key pieces:

1. Say that the proof is by contradiction.
2. Say what the negation of the original statement is.

3. Say you have reached a contradiction and what the
contradiction entails.

In CS103, please include all these steps in your proofs!

which is impossible;
by assumption, n? is even.

We have reached a contradiction, so our assumption
must have been incorrect. Thus if n is an integer and
n?is even, n is even as well. B



Theorem: For any integer n, if n? is even, then n is even.
Proof: Assume for the sake of contradiction that there is
an integer n where n? is even, but n is odd.

Since n is odd we know that there is an integer k such
that

n=2k+1. (1)

Squaring both sides of equation (1) and simplifying
gives the following:

n‘= (2k + 1)
= 4k* + 4k + 1
= 2(2k* + 2k) + 1. (2)

Equation (2) tells us that n? is odd, which is impossible;
by assumption, n? is even.

We have reached a contradiction, so our assumption
must have been incorrect. Thus if n is an integer and
n?is even, n is even as well. B



Proving Implications

 Suppose we want to prove this implication:
If P is true, then Q is true.
 We have three options available to us:

 Direct Proof:
Assume P is true, then prove Q is true.
 Proof by Contrapositive.
Assume Q is false, then prove that P is false.

of by Contradiction.

Negation
of “if-then”
becomes
“and”!

Assume P is true and Q is false,
then derive a contradiction.




What We Learned

What's an implication?

« It's statement of the form “if P, then Q,” and states that if P is
true, then Q is true.

How do you negate formulas?

« It depends on the formula. There are nice rules for how to
negate universal and existential statements and implications.

What is a proof by contrapositive?

« It's a proof of an implication that instead proves its
contrapositive.

* (The contrapositive of “if P, then Q” is “if not Q, then not P.”)
What's a proof by contradiction?

« It's a proof of a statement P that works by showing that P
cannot be false.



Your Action Items

* Read “Guide to Office Hours,” the
“Proofwriting Checklist,” and the “Guide
to LaleX.”

* There’s a lot of useful information there. In
particular, be sure to read the Proofwriting
Checklist, as we’ll be working through this
checklist when grading your proofs!

* Start working on PS1.

At a bare minimum, read over it to see what’s
being asked. That’ll give you time to turn things
over in your mind this weekend.



Next Time

« Mathematical Logic

 How do we formalize the reasoning from our
proofs?

 Propositional Logic
 Reasoning about simple statements.
 Propositional Equivalences

« Simplifying complex statements.
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